Abstract

In Satellite-Based Augmentation Systems (SBASs), e.g., the US Wide-Area Augmentation System (WAAS), the planar method and the kriging method based on the thin-shell model have been used to estimate the ionospheric grid delay (IGD). Generally, the kriging method can achieve higher accuracy than the planar method. In comparison with the thin-shell model, ionospheric tomography overcomes the limitations of the 2D ionospheric delay modeling and can realize 3D or even 4D ionospheric electron density reconstructions, especially suitable over disturbed periods. For the first time by virtue of electron density inversions, a tomographic method and a kriging-combined tomographic method are proposed innovatively to apply for estimating IGDs over part of the WAAS region using 32 ground stations during ionospheric disturbances on September 7–9, 2017. Then, independent dual-frequency Global Positioning System (GPS) data at six stations are applied to validate estimated IGD results from these four methods. It is shown that the overall errors of the planar method, the kriging method, the tomographic method, and the kriging-combined tomographic method over 3 days are decreased one by one, while errors using the latter two methods are quite similar. When focusing on the strong disturbed times, the latter two tomographic methods can obtain more accurate IGD than the former two methods based on the thin shell model. Tomographic total electron content (TEC) maps over the study area are also reconstructed to help analyze the underlying mechanism at different stations. It is also noted that the kriging-combined tomography has little improvement in IGD estimates in comparison with the tomographic method alone during strong ionospheric disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call