Abstract

High-throughput cell-based phenotypic screening has become an increasingly important technology for discovering new drug targets and assigning gene functions. Such experiments use hundreds of 96-well or 384-well plates, to cover whole-genome RNAi collections and/or chemical compound files, and often collect measurements that are sensitive to spatial background noise whose patterns can vary across individual plates. Correcting these position effects can substantially improve measurement accuracy and screening success. We developed SbacHTS (Spatial background noise correction for High-Throughput RNAi Screening) software for visualization, estimation and correction of spatial background noise in high-throughput RNAi screens. SbacHTS is supported on the Galaxy open-source framework with a user-friendly open access web interface. We find that SbacHTS software can effectively detect and correct spatial background noise, increase signal to noise ratio and enhance statistical detection power in high-throughput RNAi screening experiments. http://www.galaxy.qbrc.org/

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.