Abstract

Organic pollutants in water have been threatening public and environmental health. Developing efficient and sustainable photocatalysts working for degradation of organic pollutants under visible light becomes a big challenge. In this paper, high-efficiency visible light driven catalyst ordered mesoporous graphite nitride carbon (mpg-C3N4) was prepared by using SBA-15 as template and dicyandiamide (C2H4N4) as precursor. The specific surface area of mpg-C3N4can be increased remarkably as compared to that of the bulk graphite nitrite carbon (g-C3N4) by adjusting the ratio of SBA-15 to dicyandiamide. Photocatalytic performance of mpg-C3N4were evaluated systematically by degradation of Rhodamine B (RhB), malachite green (MG) and tetracycline hydrochloride (TC) under visible light irradiation. The results showed that the mpg-C3N4(1:0.5) has the highest photocatalytic activity and stability and the degradation rate is for RhB, MG and TC are all more than seven times that of bulk g-C3N4. After five recycling runs, the mpg-C3N4(1:0.5) remains high photocatalytic activities for the degradation of MG (94%) and TC (81%), respectively. Additionally, radical trapping experiments certified that the main active species are [Formula: see text] and h[Formula: see text], while the role of [Formula: see text]OH is irrelevant in the reaction processes. This work provides a promising pathway to prepare metal-free photocatalyst for degradation of organic pollutants under visible light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call