Abstract

SBA-15 mesoporous silica was modified with metal (Al, Ti, Cu, Fe) oxides by the molecular designed dispersion (MDD) method using acetylacetonate complexes of metals as precursors of the catalytically active components. The modified mesoporous silicas were characterized with respect to texture (BET), composition (EPMA), coordination and aggregation of transition metal species (UV–vis-DRS), reducibility of the deposited transition metals (TPRed) and surface acidity (FT-IR). Deposition of aluminium and titanium species on the SBA-15 surface significantly increased its acidity, mainly by generation of strong Lewis acid sites. Copper and iron deposited on the surface of pure SBA-15 were present nearly exclusively in the form of mononuclear cations. Deposition of Fe or Cu on the SBA-15 supports modified with alumina or titania resulted in a formation of significant amounts of oligomeric metal oxide clusters. The SBA-15 based samples have been found to be active and selective catalysts of the DeNO x process. The modification of the silica surface with titanium or aluminium prior to the deposition of iron or copper significantly improved the activity of the SBA-15 based catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call