Abstract

Immobilization of molybdenum complexes of amino acid Schiff bases within the SBA-16 nanocages produced new heterogeneous catalysts for the epoxidation of olefins. First, amino acid Schiff bases were obtained through the reaction of amino acids with salicylaldehyde. Then, complexation of the prepared amino acid Schiff bases with molybdenum (VI) produced the molybdenum complexes of amino acid Schiff bases. Immobilization of the molybdenum complexes into the SBA-16 nanocages followed by silylation with triethoxyoctylsilane gave the heterogenized molybdenum catalysts. The obtained catalysts were characterized with several physicochemical techniques. FT-IR and inductively coupled plasma optical emission (ICP-OES) spectroscopies approved the inclusion of molybdenum complexes within the SBA-16 nanocages. The results of X-ray diffraction (XRD) and nitrogen adsorption-desorption (BET method) analyses illustrated that surface properties of SBA-16 were maintained upon the inclusion of molybdenum complexes. The prepared catalysts exhibited good activities and excellent selectivities (>99%) in the epoxidation of olefins with tert-butyl hydroperoxide (TBHP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.