Abstract

Metal oxyhalides are attracting extensive interest for their enchanting structures and diverse properties. Herein, a ternary antimony oxyiodide, Sb5O7I with the new hexagonal noncentrosymmetric P63 structure is systematically surveyed by focusing on its nonlinear-optical (NLO) behavior. Its two-dimensional structure is constructed by {Sb2[Sb3O7]}∞+ layers separated by charge-balanced I- anions. The second-harmonic-generation measurement result suggests that Sb5O7I is NLO-active, and the effect is assigned to the [SbO3]3- triangular pyramids' contribution. Sb5O7I shows a direct optical energy gap of 3.22 eV, which is the largest among all reported ternary oxyiodides. This work is the first investigation of ternary NLO Sb-based oxyhalides and enriches the study of metal oxyhalides as promising NLO materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.