Abstract

A new birefringent crystal of Sb4O3(TeO3)2(HSO4)(OH) was achieved by incorporating two stereochemically active lone pair (SCALP) cations of Sb(III) and Te(IV) into sulfates simultaneously. The Sb3+ and Te4+ ions display highly distorted coordination environments due to the SCALP effect. Sb4O3(TeO3)2(HSO4)(OH) displays a 3D structure composed of [Sb4O3(TeO3)2(OH)]∞+ layers bridged by [SO3(OH)]- tetrahedra. It possesses a large birefringence and a wide optical transparent range, making it a new UV birefringent crystal. First-principles calculation analysis suggests that the synergistic effect of the cooperation of SCALP effect of Sb3+ and Te4+ cations make a dominant contribution to the birefringence. The work highlights that units with SCALP cations have advantages in generating large optical anisotropy and are preferable structural units for designing novel birefringent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.