Abstract

Doped halide perovskite nanocrystals (NCs) have opened new opportunities for the emerging optical and optoelectronic applications. Here, we describe a hot-injection synthesis of all-inorganic lead-free Cs2SnCl6 and Sb3+ doped Cs2SnCl6 NCs. Cs2SnCl6 NCs present a blue emission peak at 438 nm, whereas a new broad-band emission peak appears at 615 nm for the Sb3+ doped NCs. Comparative structural and spectral characterizations of Sb3+ doped Cs2SnCl6 NCs with micrometer-sized undoped and Sb3+ doped crystals show that the formation of broad-band orange emission is originted from triplet self-trapped excitons, attributed to the 3Pn-1S0 transitions (n = 0, 1, 2). Our results in Sb3+ doped Cs2SnCl6 materials provide insights into the machanisms of doping-induced emission centers, and it extends the existing knowledge of optical properties of doped halide NCs for further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.