Abstract

ABSTRACTPhase-change memory materials (PCMMs) are semiconductors that exhibit rapid order-disorder transition under electrical or optical pulse excitation. Currently thin-film-based PCMMs play a dominant role in fabrication of non-volatile memory devices. In contrast, phase-change nanowires (PCNWs) have the potential to overcome future challenges such as high data density and low power consumption. Among the various methods to synthesize PCNWs, the vapor-liquid-solid method has been reported previously. In this paper, we report synthesis of Sb-Te PCNWs using a templated electrochemical method. Nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. Sb-Te PCNWs with different compositions, diameters and aspect ratios were grown inside the AAO template by electrodeposition. Composition and structure of these nanowires were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. It is found that electrodeposition through nanosized channels results in materials that are quite different from those electrodeposited on unrestricted surface. The mechanism of nanowire formation inside the channels of AAO template is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call