Abstract

We modelled the thickness and seismic anisotropy of the subcrustal lithosphere from the variations of P-wave delay times and the shear-wave splitting observed at seismological observatories and portable stations in the western part of the Bohemian Massif. The Saxothuringian lithosphere is characterized by a total thickness between 90 and 120 km, the Moldanubian lithosphere is generally thicker –120-140 km, on the average. The subcrustal lithosphere of both units is characterised by divergently dipping anisotropic structures and the suture between them is marked by a lithosphere thinning to about 80km. Within the subcrustal lithosphere a complex structure of the transition of both units extends to about 150 km toward the south. We suggest that the Saxothuringian-Moldanubian suture has created a zone of mechanical predisposition for the Tertiary Ohře (Eger) Graben, as well as for the occurrence of earthquake swarms in the region. Most earthquakes occur within the brittle part of the upper crust above the crossing of the suture between the Saxothuringian in the north and the Moldanubian and the Tepl´-Barrandian in the south, with the tectonically active Marianske Lazně fault.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.