Abstract

The aperiodic X-ray variability in neutron star and black hole X-ray binaries (XRBs), and active galactic nuclei (AGN) shows a characteristic linear relationship between rms amplitude and flux, implying a multiplying-together or `coupling' of variability on different time-scales. Such a coupling may result from avalanches of flares, due to magnetic reconnection in an X-ray emitting corona. Alternatively this coupling may arise directly from the coupling of perturbations in the accretion flow, which propagate to the inner emitting regions and so modulate the X-ray emission. Here, we demonstrate explicitly that the component of aperiodic variability which carries the rms-flux relation in the accreting millisecond pulsar SAX J1808.4-3658 is also coupled to the 401 Hz pulsation in this source. This result implies that the rms-flux relation in SAX J1808.4-3658 is produced in the accretion flow on to the magnetic caps of the neutron star, and not in a corona. By extension we infer that propagating perturbations in the accretion flow, and not coronal flares, are the source of the rms-flux relations and hence the aperiodic variability in other XRBs and AGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.