Abstract

Layered architectures are prevalent in tough biological composites, such as nacre and bone. Another example of a biological composite with layered architecture is the skeletal elements—called spicules—from the sponge Euplectella aspergillum. Based on the similarities between the architectures, it has been speculated that the spicules are also tough. Such speculation is in part supported by a sequence of sudden force drops (sawtooth patterns) that are observed in the spicules' force-displacement curves from flexural tests, which are thought to reflect the operation of fracture toughness enhancing mechanisms. In this study, we performed three-point bending tests on the spicules, which also yielded the aforementioned sawtooth patterns. However, based on the analysis of the micrographs obtained during the tests, we found that the sawtooth patterns were in fact a consequence of slip events in the flexural tests. This is put into perspective by our recent study, in which we showed that the spicules' layered architecture contributes minimally to their toughness, and that the toughness enhancement in them is meager in comparison to what is observed in bone and nacre [Monn MA, Vijaykumar K, Kochiyama S, Kesari H (2020): Nat Commun 11:373]. Our past and current results underline the importance of inferring a material's fracture toughness through direct measurements, rather than relying on visual similarities in architectures or force-displacement curve patterns. Our results also suggest that since the spicules do not possess remarkable toughness, re-examining the mechanical function of the spicule's intricate architecture could lead to the discovery of new engineering design principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.