Abstract

Surface acoustic wave (SAW) radio-frequency identification (RFID) has high potential for industrial applications, where automated identification and localization of assets represent the backbone of process controlling and logistics. However, in situations where multiple tags are simultaneously interrogated, the response patterns corresponding to the hard-coded reflectors are prone to overlap, preventing their association with the corresponding tags and, hence, the correct tag decoding. Identification and localization of multiple SAW RFID tags are addressed in this work under this challenging effect, known as collision, with a multi-antenna mobile robot-based synthetic aperture approach. Using the estimation of the spatial probability density functions of the SAW tag reflectors over a given interrogation aperture, the received impulse responses can be resolved in three dimensions and clustered with respect to their estimated locations. The performance of the proposed approach to associate and localize the signals from multiple tags was evaluated theoretically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.