Abstract

PurposeConventional laparoscopic surgery (CLS) imposes an increased risk of work-related musculoskeletal disorders. Technical innovations, such as robotic-assisted laparoscopic surgery (RALS), may provide ergonomic benefits. We compare the surgeon`s work-related demands of CLS vs RALS for benign hysterectomies.MethodsFive specialists (3 females, 2 males) each performed four RALS and four CLS as part of their daily clinical routine. During the surgical procedures, muscular demands were assessed by bipolar surface electromyograms of the descendent trapezius, extensor digitorum and flexor carpi radialis muscles as well as cardio-vascular demands by electrocardiography, and neck, arm and torso posture by gravimetrical position sensors. Additionally, the subjects rated their level of perceived workload (NASA TLX questionnaire with 6 dimension) and musculoskeletal discomfort (11-point Likert-scale, 0–10).ResultsMuscular demands of the trapezius and flexor carpi radialis muscles were lower with RALS but extensor digitorum demands increased. Cardiovascular demands were about 9 heart beats per minute (bpm) lower for RALS compared to CLS with a rather low median level for both surgical techniques (RALS = 84 bpm; CLS 90 bpm). The posture changed in RALS with an increase in neck and torso flexion, and a reduction in abduction and anteversion position of the right arm. The perceived workload was lower in the physical demands dimension but higher in the mental demands dimension during RALS. Subjective musculoskeletal discomfort was rare during both surgical techniques.ConclusionsThis explorative study identified several potential ergonomic benefits related to RALS which now can be verified by studies using hypothesis testing designs. However, potential effects on muscular demands in the lower arm extensor muscles also have to be addressed in such studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.