Abstract

Competitive displacements or reductions of resident populations of insects, often effected by a related species, may be caused by a variety of mechanisms. Satyrization is a form of mating interference in which males of one species mate with females of another species, significantly decreasing their fitness and not generating hybrids. Satyrization has been established to be the probable cause of competitive displacements of resident mosquitoes by invasive species, especially of Aedes aegypti by Aedes albopictus, two important vectors of dengue and chikungunya viruses. Mathematical models predict that even low levels of asymmetric mating interference are capable of producing competitive displacements or reductions. Couplings of virgin Ae. aegypti females with Ae. albopictus males effectively sterilize these females through the monogamizing actions of male accessory gland products, but the converse interspecific mating does not impact the future reproduction of Ae. albopictus females. Populations of Ae. aegypti exposed to satyrization quickly evolve resistance to interspecific mating, which is believed to ameliorate reproductive interference from, and promote co-existence with, Ae. albopictus. The evolution of satyrization resistance among Ae. aegypti in laboratory cages is accompanied by fitness costs, such as reduced fecundity and slower receptivity to conspecific males. Cage experiments and field observations indicate that Ae. albopictus males are capable of satyrizing females of other species of the Stegomyia subgenus, potentially leading to competitive displacements, and possible extinctions, especially of endemic species on islands. Examination of other examples of reproductive interference in insects reveals few parallels to the mechanism and outcomes of satyrization by Ae. albopictus. We conclude by posing the hypothesis that satyrization may favor the ecological success of Ae. albopictus, and suggest many lines for future research on this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call