Abstract
AbstractSaturn's northern summertime hemisphere was mapped by JWST/Mid‐Infrared Instrument (4.9–27.9 µm) in November 2022, tracing the seasonal evolution of temperatures, aerosols, and chemical species in the 5 years since the end of the Cassini mission. The spectral region between reflected sunlight and thermal emission (5.1–6.8 µm) is mapped for the first time, enabling retrievals of phosphine, ammonia, and water, alongside a system of two aerosol layers (an upper tropospheric haze p < 0.3 bars, and a deeper cloud layer at 1–2 bars). Ammonia displays substantial equatorial enrichment, suggesting similar dynamical processes to those found in Jupiter's equatorial zone. Saturn's North Polar Stratospheric Vortex has warmed since 2017, entrained by westward winds at p < 10 mbar, and exhibits localized enhancements in several hydrocarbons. The strongest latitudinal temperature gradients are co‐located with the peaks of the zonal winds, implying wind decay with altitude. Reflectivity contrasts at 5–6 µm compare favorably with albedo contrasts observed by Hubble, and several discrete vortices are observed. A warm equatorial stratospheric band in 2022 is not consistent with a 15‐year repeatability for the equatorial oscillation. A stacked system of windshear zones dominates Saturn's equatorial stratosphere, and implies a westward equatorial jet near 1–5 mbar at this epoch. Lower stratospheric temperatures, and local minima in the distributions of several hydrocarbons, imply low‐latitude upwelling and a reversal of Saturn's interhemispheric circulation since equinox. Latitudinal distributions of stratospheric ethylene, benzene, methyl, and carbon dioxide are presented for the first time, and we report the first detection of propane bands in the 8–11 µm region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.