Abstract

In this paper a thermodynamic assessment and a preliminary cost evaluation are given for an evaporative gas turbine (EvGT) cycle packed humidifier. Both background theory and simulation results are included. Two different approaches were used for the humidifier system modelling: the full integration of the mass-energy balance and mass transfer equations (called SAT model), and an atmospheric cooling tower-based model (called CT model). Both approaches were used to perform component thermodynamic analyses and to determine the humidifier packing design. Within these approaches, two simulation cases are discussed: a test case, with experimental results from the pilot-plant of the University of Lund, and a case study of the saturators for the optimised HAT (humid air turbine) cycles of a plant with a 50 MW power output. The two cases presented consider two different operating conditions for the saturator: the first being a “non-optimised” saturator, and the later the “optimal” configuration with reduced exergetic losses. For the case study, the saturator design and cost evaluation are also included. All simulation results were performed with the in-house SAT (SATurator simulation tool) code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.