Abstract

Saturation transfer difference (STD) Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful method for studying protein-ligand interactions in solution. The STD NMR method is capable of identifying the binding epitope of a ligand when bound to its receptor protein. Ligand protons that are in close contact with the receptor protein receive a higher degree of saturation, and as a result stronger STD NMR signals can be observed. Protons that are either less or not involved in the binding process reveal no STD NMR signals. Therefore, the STD NMR method is an excellent tool to investigate how a binding ligand interacts with its receptor molecule. The STD NMR experiment is easy to implement and only small amounts of native protein are required. This chapter comprises a detailed experimental protocol to acquire STD NMR spectra and determine the binding epitope of a ligand bound to its target protein. As representative examples the ligands uridyl-triphosphate (UTP) and uridyl-glucose-diphosphate (UDP-glucose) when bound to the Leishmania major UDP-glucose-pyrophosphorylase (UGP) as target protein are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.