Abstract

The saturation physics of ion-temperature-gradient-driven turbulence is examined in relation to the temperature-gradient variation of the heat flux, which can exhibit an upshift of the critical gradient for significant flux relative to the linear instability threshold. Gyrokinetic measurements of saturation properties and spectral energy transfer, which will be defined in Sec. II, are presented, indicating that the physics of saturation is fundamentally unchanged on either side of the upshifted gradient. To analyze heat transport below and above the upshifted critical gradient, a fluid model for toroidal ion-temperature-gradient turbulence is modified to include the kinetic instability threshold. The model and the heat flux are rendered in the eigenmode decomposition to track the dominant mode-coupling channel of zonal-flow-catalyzed transfer to a conjugate stable mode. Given linear and nonlinear symmetries, the stable mode level and the cross-correlation of the unstable and stable mode amplitudes are related to the unstable mode level via linear physics. The heat flux can then be written in terms of the unstable-mode level, which through a nonlinear balance depends on the eigenmode-dependent coupling coefficients and the triplet correlation time of the dominant coupled modes. Resonance in these quantities leads to suppressed heat flux above the linear threshold, with a nonlinear upshift of the critical gradient set by the resonance broadening of a finite perpendicular wavenumber and collisionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.