Abstract

We discuss the influence of the higher-order Kerr effect (HOKE) in wide bandgap solids at extreme intensities below the onset of optically induced damage. Using different theoretical models, we employ multiphoton absorption rates to compute the nonlinear refractive index by a Kramers-Kronig transform. Within this theoretical framework we provide an estimate for the appearance of significant deviations from the standard optical Kerr effect predicting a linear index change with intensity. We discuss the role of the observed saturation behavior in practically relevant situations, including Kerr lens mode-locking and supercontinuum generation in photonic crystal fibers. Furthermore, we present experimental data from a multiwave mixing experiment in BaF2, which can be explained by the appearance of the HOKE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.