Abstract

In class C beta-lactamases, the strictly conserved Asn152 forms part of an extended active-site hydrogen-bonding network. To probe its role in catalysis, all 19 mutants of Enterobacter cloacae P99 cephalosporinase Asn152 were simultaneously constructed and screened in Escherichia coli for their in vivo activity. The screen identified the previously uncharacterized mutants Asn152Ser, Asn152Thr, and Asn152Gly, which possess significant activity and altered substrate selectivity. In vitro measurement of Michaelis-Menten kinetic constants revealed that the Asn152Ser mutation causes a selectivity switch for penicillin G versus cefoxitin. Asn152Thr showed a 63-fold increase in k (cat) for oxacillin, a slow substrate for wild-type cephalosporinase. The results contribute to a growing body of data showing that mutation of highly conserved residues in the active site can result in substrate selectivity changes. The library screening method presented here would be applicable to substrate selectivity determination in other readily screenable enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.