Abstract

The effects of absorption and saturation on soliton states in Kerr-type nonlinear layers are theoretically investigated. In addition to the usual gray and bright soliton structures observed in nonlinear slabs, a flat soliton, i.e., a particular soliton excitation with electric field amplitude independent of the position within the layer, is researched in cases of self-defocusing and self-focusing nonlinearities. Effects caused by the combination of absorption and saturation, such as the shift and extinction of the flat soliton peak, the decrease in the amplitude of the electric field within the nonlinear layer, and the suppression of the multistable behavior of the transmission coefficient in the vicinity of the soliton peaks, are discussed. The present theoretical results are compared and found in good quantitative agreement with previous experimental measurements.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.