Abstract
By controlling the extinction ratio (ER) and overshooting level of the down-stream amplified spontaneous emission (ASE) with a gain-saturation semiconductor optical amplifier (SOA), the down-stream data-erased ASE carrier is re-encoded in an injection-locked weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) up-stream transmitter to implement all-ASE based bi-directional WDM-PON system. The effect of ER on the up-stream transmission performance of the down-stream data-erased ASE injection-locked WRC-FPLD is elucidated via the gain-saturation model. It is observed that the communication criterion with a bit-error-rate of <10⁻⁹ at 2.488 Gbit/s can be met only when ER is reduced to <3 dB and overshooting level <-5 dB. The up-stream WRC-FPLD re-encoded ASE data-stream could improve its signal-to-noise ratio (SNR) to 6.4 dB by minimizing the ER and overshooting level of the down-stream data-erased ASE to 2.4 dB and -7.8 dB, respectively, with the gain-saturated SOA. The SNR can also be improved with higher power injecting into the up-stream transmitter until saturation occurs and the optimal window of the ASE injection power is between -7 and -3 dBm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.