Abstract

A saturated power amplifier (PA) optimized for efficiency is described. As a PA is driven into saturated operation, the current source of the device generates a large third harmonic current, which creates a quasi-rectangular current waveform. The large nonlinear output capacitor of the transistor generates a second harmonic voltage with a very small third harmonic component. The second harmonic voltage is in-phase with the fundamental voltage, making a half-sine wave voltage waveform with voltage peaking. These waveforms are similar to those of a class F <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> . The fundamental load at the intrinsic device is resistive with the output capacitance tuned out, which is identical to the class F <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> case. However, the required harmonic impedances are just larger than the impedance levels of the output capacitance for both the second and third harmonics. Therefore, the circuit topology is similar to that of a class E amplifier, which is very simple. The PA implemented using a GaN HEMT delivers the expected good performance using the simple circuit topology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call