Abstract

The saturated PI (proportional-integral) based method is widely applied in nonlinear system control fields. It can be regarded as a black-box type approach with the saturated control input and utilizes the tracking error of the system output with its integral information. However, as precise description of plants’ system details is usually difficult, saturated PI control approaches have to empirically tune the proportional and integral parameters to guarantee reliable convergence, making its general convergence mechanism not interpreted. In this brief, for the first time, the convergence of the saturated PI control scheme is proved through an optimization solver based on a primal dual neural network. Illustrate examples including control of an inverted-pendulum mobile vehicle and a manipulator demonstrate the efficiency of the proposed saturated PI control method in such an optimization perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.