Abstract

Mn-doped BiFeO3 (BFO) thin films with nominal composition of BiFe1−x Mn x O3 (x = 0.00, 0.01, 0.03, 0.05, 0.07) were deposited on (111)Pt/Ti/SiO2/Si substrates via a simple sol–gel spin-coating method with rapid thermal annealing process. The BFO films with different Mn dopant contents were well crystallized in the perovskite structure and their overlapped (110) diffraction peaks shifted toward higher angles with the increase in Mn content, indicating a slight distortion in the lattice structure. Improved microstructure with smaller grain size and diminished structural defects can be observed in the films of x around 0.03. X-ray photoelectron spectroscopy analysis confirmed the coexistence of 2+ and 3+ electronic states for Fe element and proper substitution of Mn for Fe can decrease the amount of Fe2+ while excess doping results in increasing Fe2+ content. The intrinsic ferroelectric polarization was hard to be measured in the pure BFO film due to high leakage contribution, whereas the x = 0.03, 0.05 and 0.07 films exhibited well-saturated rectangular shape-like ferroelectric hysteresis loops, and more importantly, perfectly closed hysteresis loops were obtained for the x = 0.03 film with a 2Pr value of 85.2 µC/cm2. The leakage current density in high electric field region was dramatically decreased by Mn doping, e.g. decreased to 3.3 × 10−4 A/cm2 at electric filed intensity of 170 kV/cm for the x = 0.03 film. Detailed leakage current characteristic analysis suggested that the dominant conduction mechanism in the pure BFO film was the space charge limited conduction at medium/high electric fields, which was associated with the space charges originated by oxygen vacancies; however, the leakage current of the x = 0.03 film was dominated by the Schottky mechanism in medium/high electric field region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.