Abstract

In situ fragmentation bioleaching is a promising way to perform deep mining safely, economically, and in an environmentally friendly manner, where oxygen plays a critical role in microbial growth and mineral dissolution. However, the lack of oxygen limits the implementation of in-situ fragmentation bioleaching. To overcome this limitation, aeration was proposed, with saturated dissolved oxygen concentration as an important indicator. Orthogonal experiments were conducted to measure saturated dissolved oxygen concentration at various temperature, pH, and electrolyte (ferrous sulfate, ferric sulfate, copper sulfate, and sulfuric acid) concentration conditions. Experimental data were analyzed by Python programming language and least squares method to obtain a saturated dissolved oxygen concentration model. Results showed that temperature had the most significant effect on oxygen solubility, which was concluded by comparing the results of surface fitting based on the least squares method. At 30–40°C, the saturated dissolved oxygen concentration decreased faster as metal ions concentration increased. The conjoint effect of the five variables on oxygen solubility showed that pH was linearly negatively related to oxygen solubility. Additionally, a mathematical model was also proposed to predict the saturated dissolved oxygen concentration in in situ fragmentation bioleaching of copper sulfide ores. This work enables bioleaching processes to be modeled and controlled more effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.