Abstract

The saturated optical absorption of multi-walled carbon nanotube (MWNT)-doped hybrid-glass composites was studied at 1064 nm with nanosecond long pulses using the Z-scan technique. Increased transmission was demonstrated for high intensity pulses. The results were modeled for the limiting cases of a slow or a fast saturable absorber, both referring to a three-level system. The ground-state absorption cross section was estimated as 2.3x10−18 cm2, in good agreement with that of a single carbon atom. The excited state absorption cross section for carbon nanotubes (CNTs) was estimated for the first time as 6.9x10−19 cm3. The absorber's density of 2.8x1018 cm−3 is smaller by approximately a factor of 5 compared to the nominal density of carbon atoms incorporated into the glass. This could be a result of the broad band-like states formation in the MWNTs. The above figures were obtained by assuming that the excited state decay time was longer than the pulse duration of ~1 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.