Abstract

Abstract In engineering-design problems, usually, there are multiple goals with different units, continuous and discrete variables, nonlinear equations, nonconvex equations, and coupled decisions. Ideally, all goals’ target are reached simultaneously within the feasible space. However, the optimal solution may not be available. To deal with all those complexities, a modeling strategy named “satisficing” was proposed in the 1980s. The satisficing strategy allows designers to find “good enough” but may not be optimal solutions. In this paper, we review the publications applying the satisficing strategy on engineering-design problems, and categorize the methods regarding the design stages they manage. We define the methods dealing with all four design stages—formulation, approximation, solution, and evaluation—as the whole process satisficing methods. We review the publications using the whole process satisficing strategy in great detail. In the past 30 years, the whole process satisficing strategy has been improved and applied to a wide variety of engineering-design problems, based on which derived methods, concepts, and platforms are developed. We generalize the specialties, advantages, and scope of applications of the methods in the whole process satisficing strategy. We expect this paper provides information on when and how designers may apply satisficing for their problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.