Abstract
Programming languages and software engineering tools routinely encounter components that are difficult to reason on via formal techniques or whose formal semantics are not even available—third-party libraries, inline assembly code, SIMD instructions, system calls, calls to machine learning models, etc. However, often access to these components is available as input-output oracles—interfaces are available to query these components on certain inputs to receive the respective outputs. We refer to such functions as closed-box functions . Regular SMT solvers are unable to handle such closed-box functions. We propose Sādhak, a solver for SMT theories modulo closed-box functions. Our core idea is to use a synergistic combination of a fuzzer to reason on closed-box functions and an SMT engine to solve the constraints pertaining to the SMT theories. The fuzz and the SMT engines attempt to converge to a model by exchanging a rich set of interface constraints that are relevant and interpretable by them. Our implementation, Sādhak, demonstrates a significant advantage over the only other solver that is capable of handling such closed-box constraints: Sādhak solves 36.45% more benchmarks than the best-performing mode of this state-of-the-art solver and has 5.72x better PAR-2 score; on the benchmarks that are solved by both tools, Sādhak is (on an average) 14.62x faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.