Abstract

Regulation of appetite and food intake is partly regulated by N-acylethanolamine lipids oleoylethanolamide (OEA), stearoylethanolamide (SEA), and palmitoylethanolamide (PEA), which induce satiety through endogenous formation in the small intestine upon feeding, but also when orally or systemic administered. OEA, SEA, and PEA are present in human milk, and we hypothesized that the content of OEA, SEA, and PEA in mother’s milk differed for infants being heavy (high weight-for-age Z-score (WAZ)) or light (low WAZ) at time of milk sample collection. Ultra-high performance liquid chromatography-mass spectrometry was used to determine the concentration of OEA, SEA, and PEA in milk samples collected four months postpartum from mothers to high (n = 50) or low (n = 50) WAZ infants. Associations between OEA, SEA, and PEA concentration and infant anthropometry at four months of age as well as growth from birth were investigated using linear and logistic regression analyses, adjusted for birth weight, early infant formula supplementation, and maternal pre-pregnancy body mass index. Mean OEA, SEA, and PEA concentrations were lower in the high compared to the low WAZ group (all p < 0.02), and a higher concentration of SEA was associated with lower anthropometric measures, e.g., triceps skinfold thickness (mm) (β = −2.235, 95% CI = −4.04, −0.43, p = 0.016), and weight gain per day since birth (g) (β = −8.169, 95% CI = −15.26, −1.08, p = 0.024). This raises the possibility, that the content of satiety factors OEA, SEA, and PEA in human milk may affect infant growth.

Highlights

  • The prevalence of obesity has tripled since 1975 including a dramatic increase in the prevalence of overweight and obesity in children

  • We investigated the proportion of high weight gainers in the low and high weight-for-age Z-score (WAZ) group, respectively

  • The detection of appetite regulators in human milk is not a novel finding, but—to our knowledge—this is the largest study investigating the concentration of satiety factors OEA, SEA, and PEA in human milk samples and associations to offspring anthropometry and growth

Read more

Summary

Introduction

The prevalence of obesity has tripled since 1975 including a dramatic increase in the prevalence of overweight and obesity in children. 5 years, and more than 340 million children and adolescents aged 5–19 years were overweight or obese [1]. It is pronounced and acknowledged that rapid or excess weight gain, most often defined as a change in weight-for-age Z-score (WAZ) of ≥0.67 [2,3], during the first two years of life is associated with a higher risk of being overweight or obese in later childhood [4], and that the association is even more pronounced for rapid weight gain during the first year of life [5]. Childhood overweight and obesity track into adolescence and adulthood [6], resulting in an increased risk of noncommunicable diseases (e.g., cardiovascular diseases, diabetes, cancer) and premature death [1]. Increased intake of energy-dense foods (including a transition to a higher n-6/n-3 ratio of the dietary polyunsaturated fatty acids intake [7]) and decreased levels of physical activity are major elements in the ongoing obesity epidemic.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call