Abstract

Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.