Abstract

AbstractSpace‐borne remote sensing techniques enable near real‐time mapping of floods cost‐efficiently. Synthetic aperture radar (SAR) and optical sensors are the most suitable for flood detection. However, SAR has become more popular, due to the independence of sunlight and weather conditions, and the increasing data availability. Typical spring floods occurred in northern Finland during 2018. Various remote sensing sources were utilised for monitoring and damage estimation of the flooding. Floods were mapped with the SAR‐based Finnish Flood Centre's Flood Detection Algorithm (FC‐FloDA), a standard threshold‐based approach applied to Sentinel‐1, and a visual interpretation of Sentinel‐2 images. In addition, flood maps from the Copernicus Emergency Management Service (EMS) and aerial photographs from the city of Tornio were ordered. The flood products and interpretations were compared, and a deeper accuracy assessment was conducted on the FC‐FloDA maps. FC‐FloDA was, in general, the most successful in detecting floods within the test areas. The EMS product and the Sentinel‐1 interpretation worked well in open areas, but did not detect floods in forests. The superiority of Flood Centre's product is mainly based on the adaptation of the algorithm to northern boreal environments and the selection of an optimal polarisation for detecting floods also under tree canopies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.