Abstract

Every year weather vagaries have caused shortfalls of agricultural production regionally and every 3–4 years these shortfalls occurred globally. Therefore, early assessment of crop losses in response to weather fluctuations is an important task for the estimation of global, regional and countries food supply/demand, donor’s decision to assists the nations in need and to those receiving the assistance. The new satellite-based technology has been recently developed to provide timely and accurate crops’ monitoring and assessments. This technology includes the theory, algorithm, data base and operational implementation of vegetation health (VH) assessments from observations provided by the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. Several AVHRR-based VH indices were developed and used to provide weekly cumulative estimation of moisture, thermal and health conditions of vegetation canopy throughout the growing season. The indices were calculated for the entire 1981–2010 period of the AVHRR sensor in space and were compared with regional crop yields in the two dozens of countries. Strong correlation between wheat (both winter and spring), corn, soybeans and sorghum yield and VH indices was found during the critical period of the tested crops. The test results showed that VH indices can be used as proxy for early (2–5 months in advance of harvest) assessment of crop yield with the errors of estimation less than 10%. This paper discusses utility of space observations for early forecasting regional crop yield in Ukraine, with specific emphasis on 2–5 months warning of weather-related losses in agricultural production and their impact on agricultural supply/demand and food security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.