Abstract
Silver polymer electrolyte membranes containing inorganic nanoparticles have showed excellent facilitated olefin transport properties. However, the application of facilitated transport membranes has been significantly hampered because of the poor stability of silver ions carrier. The structural changes of the facilitated transport membranes corresponding to the reduced separation performance with an extended time have rarely been studied. In this study, titanium dioxide (TiO2) nanoparticles were introduced into poly(ethylene oxide) (PEO)/silver tetrafluoroborate polymer electrolyte membranes for propylene/propane separation. X-ray diffraction (XRD) analysis indicated that the addition of TiO2 and silver salt reduced the crystallinity of PEO. The selectivity of propylene/propane of the polymer electrolyte membrane increased with increasing concentration of silver salt and TiO2 in the polymer matrix. However, the propylene/propane selectivity decreased from 19.04 to 5.40 as the silver carrier ions became deactivated over the course of 196 h experiment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that the satellite TiO2 nanoparticles were formed around the silver salt after the composite membrane was placed in the air for 10 d. The findings in this work highlight the understanding of the carrier stability in polymer electrolyte membranes, and provide a potential opportunity to develop more stable polymer/carrier systems for the application of facilitated olefin transport membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.