Abstract

The paper discusses our studies of oil pollution in the Black and Caspian Seas. The research was based on a multi-sensor approach on satellite survey data. A combined analysis of oil film signatures in satellite synthetic aperture radar (SAR) and optical imagery was performed. Maps of oil spills detected in satellite imagery of the whole aquatic area of the Black Sea and the Middle and the Southern Caspian Sea are created. Areas of the heaviest pollution are outlined. It is shown that the main types of sea surface oil pollution are ship discharges and natural marine hydrocarbon seepages. For each type of pollution and each sea, regions of regular pollution occurrence were determined, polluted areas were estimated, and specific manifestation features were revealed. Long-term observations demonstrate that in recent years, illegal wastewater discharges into the Black Sea have become very common, which raises serious environmental issues. Manifestations of seabed hydrocarbon seepages were also detected in the Black Sea, primarily in its eastern part. The patterns of surface oil pollution of the Caspian Sea differ considerably from those observed in the Black Sea. They are largely determined by presence of big seabed oil and gas deposits. The dependence of surface oil SAR signatures on wind/wave conditions is discussed. The impact of dynamic and circulation processes on oil films drift and spread is investigated. A large amount of the data available allowed us to make some generalizations and obtain statistically significant results on spatial and temporal variability of various surface film manifestations.The examples and numerical data we provide on ship spills and seabed seepages reflect the influence of the pollution on the sea environment.

Highlights

  • Nowadays, environmental research technologies based on satellite remote sensing of the Earth are rapidly developing throughout the world in application to different classes of natural objects, including marine environment

  • In our previous we demonstrated that the demonstrated that the reduction in the within slick can reduction in the Normalized Radar Cross Section (NRCS) within a slick can reach 2–11adB

  • For this study we examined all Advanced Synthetic Aperture Radar (ASAR) Envisat images of the Caspian Sea obtained over Oil Rocks

Read more

Summary

Introduction

Environmental research technologies based on satellite remote sensing of the Earth are rapidly developing throughout the world in application to different classes of natural objects, including marine environment. Satellite monitoring is an effective way of monitoring sea surface outside of ports and oil terminals. It allows for continuous monitoring of oil pollution over a vast area of offshore waters including territorial waters of neighboring countries. The latter is important for monitoring trans-border transport of the pollution by sea currents [10]. The availability of satellite information (especially at low or no cost) has significantly broadened its application in scientific and applied research and has largely contributed to the development of remote sensing systems

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.