Abstract

Abstract The concept of generating electricity using satellite solar power (SSP) has recently enjoyed renewed interest as a source of non-fossil fuel energy. First proposed in the 1960s, then studied sporadically in the past decade, SSP offers a potentially large supply of power but without the carbon emissions associated with evidence of global climate change. SSP faces challenges: competition from other non-fossil renewable energy, such as wind power, and the lead-time and costs required to assemble, test, and deploy an SSP system. At the request of a consortium of electric utilities, of NASA, and of the US National Science Foundation, this paper estimates the value of SSP in four distinct geographic regions, each differing in terms of their resource base for conventional renewable energy. Because deployment of SSP would be sometime in the future, we explicitly incorporate uncertainty in the model. We find the cost-effectiveness of SSP is highly sensitive to geographic region, to the reliability of SSP, and to the cost of carbon damages avoided by its use. The results offer guidance for decision makers in space, energy, and environment programs who must allocate scarce budgetary resources among competing public investment alternatives for clean energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.