Abstract

The freeze-thaw (FT) status of soil regulates ecological and hydrologic processes and is therefore a vital component of land surface models. This study utilizes a Hidden Markov Model (HMM) to retrieve surface FT status from L-band (SMAP) and Ka-band (AMSR) satellite microwave brightness temperatures in cold-constrained lands north of 45 °N. The HMM, parameterized on a per-gridcell basis such that there are two possible states and emissions probabilities are assumed to be a two-component Gaussian Mixture, produces the posterior probability (a continuous variable between 0 and 1) that the surface is frozen given the radiometer input. HMM classification accuracy, averaged over five core validation networks, is acceptable (Ap > 80 %) when judged against in situ air and soil temperature measurements from individual validation sites and is comparable to that of current FT products that produce a discrete state. Patterns in performance across variable land class, open water fraction, and elevation are assessed from 91 sparse network weather stations within 87 gridcells in the domain. The resulting satellite data record provides a continuous variable estimate of the daily probability of frozen conditions over northern land areas experiencing widespread thawing of permafrost and a shrinking frozen season due to global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.