Abstract

Fine particulate matter (aerodynamic diameters of less than 2.5 µm, PM2.5) air pollution has become one of the major environmental challenges, causing severe environmental issues in urban visibility, climate, and public health. In this study, ground-level PM2.5 concentrations, air-quality categories (AQCs), and health risk categories (HRCs) over Beijing, China, have been estimated based on mid-visible column aerosol optical depth (AOD) measurements extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) data on board both Terra and Aqua satellites. Our results indicate that the MODIS AOD retrievals at 550 nm (AOD550) match hourly aerosol robotic network (AERONET) measurements with correlation coefficients (r) of 0.950 for Terra and 0.895 for Aqua. The relationship between ground-level PM2.5 and MODIS AOD550 from March 2012 to February 2013 showed correlation coefficients of 0.69, 0.60, and 0.73 for spring, summer, and autumn, respectively. The atmospheric boundary layer height and relative humidity (RH) adjustments improved the AOD–PM2.5 relationship in summer months. The estimates of daily average PM2.5 from satellite measurements were used to predict both AQCs and HRCs, which are well matched with observations. Satellite remote sensing of atmospheric aerosols continues to show great potential for estimating ground-level PM2.5 concentrations and can be further used to monitor the atmospheric environment in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.