Abstract

Abstract. We report on results of a systematic inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 km grid resolution for both the Arctic and the Antarctic. The products are compared with each other with respect to differences in SIC, sea-ice area (SIA), and sea-ice extent (SIE), and they are compared against a global wintertime near-100 % reference SIC data set for closed pack ice conditions and against global year-round ship-based visual observations of the sea-ice cover. We can group the products based on the concept of their SIC retrieval algorithms. Group I consists of data sets using the self-optimizing EUMETSAT OSI SAF and ESA CCI algorithms. Group II includes data using the Comiso bootstrap algorithm and the NOAA NSIDC sea-ice concentration climate data record (CDR). The standard NASA Team and the ARTIST Sea Ice (ASI) algorithms are put into group III, and NASA Team 2 is the only element of group IV. The three CDRs of group I (SICCI-25km, SICCI-50km, and OSI-450) are biased low compared to a 100 % reference SIC data set with biases of −0.4 % to −1.0 % (Arctic) and −0.3 % to −1.1 % (Antarctic). Products of group II appear to be mostly biased high in the Arctic by between +1.0 % and +3.5 %, while their biases in the Antarctic range from −0.2 % to +0.9 %. Group III product biases are different for the Arctic, +0.9 % (NASA Team) and −3.7 % (ASI), but similar for the Antarctic, −5.4 % and −5.6 %, respectively. The standard deviation is smaller in the Arctic for the quoted group I products (1.9 % to 2.9 %) and Antarctic (2.5 % to 3.1 %) than for group II and III products: 3.6 % to 5.0 % for the Arctic and 4.0 % to 6.5 % for the Antarctic. We refer to the paper to understand why we could not give values for group IV here. We discuss the impact of truncating the SIC distribution, as naturally retrieved by the algorithms around the 100 % sea-ice concentration end. We show that evaluation studies of such truncated SIC products can result in misleading statistics and favour data sets that systematically overestimate SIC. We describe a method to reconstruct the non-truncated distribution of SIC before the evaluation is performed. On the basis of this evaluation, we open a discussion about the overestimation of SIC in data products, with far-reaching consequences for surface heat flux estimations in winter. We also document inconsistencies in the behaviour of the weather filters used in products of group II, and we suggest advancing studies about the influence of these weather filters on SIA and SIE time series and their trends.

Highlights

  • For more than 40 years, the fraction of the polar oceans covered by sea ice, or sea-ice concentration, has been monitored by means of satellite microwave radiometry

  • If we focus on sea-ice concentrations < 95 % to avoid the clustering of data pairs near 100 % during winter, we find the climate data record (CDR) of the group I products, SICCI-25km, SICCI50km, and OSI-450, to stand out with winter-to-summer changes in the difference between ship- and satellite-based sea-ice concentrations around 0.2 %, compared to ∼ 3.5 % for group II products in the Arctic

  • Three new global sea-ice concentration (SIC) climate data records (CDRs) have been released. They are described in Lavergne et al (2019). These products, SICCI25km, SICCI-50km, and OSI-450, utilize a dynamic, selfoptimizing hybrid sea-ice concentration algorithm, which is applied to satellite microwave brightness temperature measurements of the SMMR, Sensor Microwave/Imager (SSM/I), and Sensor Microwave Imager/Sounder (SSMIS) instruments (OSI-450) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) instruments (SICCI25km and SICCI-50km); see Table 1 for instruments and frequencies

Read more

Summary

Introduction

For more than 40 years, the fraction of the polar oceans covered by sea ice, or sea-ice concentration, has been monitored by means of satellite microwave radiometry. Scanning Multichannel Microwave Radiometer (SMMR) Special Sensor Microwave/Imager (SSM/I) Special Sensor Microwave Imager/Sounder (SSMIS) Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Advanced Microwave Scanning Radiometer 2 (AMSR2)

18 Oct 2003–today 5 May 2002–4 Oct 2011
Sea-ice concentration data sets
Grid resolution
Land spillover correction
Ship-based visual sea-ice cover observations
Arctic sea-ice area and extent time series
Antarctic sea-ice area and extent time series
Arctic sea-ice concentration distribution differences
Antarctic sea-ice concentration distribution differences
Summary and discussion of sea-ice area and extent findings
Arctic
Antarctic
Comparison with ship-based visual sea-ice cover observations
NT2–AMSR-E
Summary and discussion of comparison against ship-based observations
Observed differences in sea-ice area and extent
The role of weather filters
Findings
Observed differences to ship-based observations
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call