Abstract
Background.Nitrogen dioxide (NO2) is known to affect human health, causing heart and cardiovascular diseases, and it has been shown that locations with long term NO2 pollution recorded a high number of fatalities due to the COVID-19 pandemic. There are no ground stations monitoring emissions of NO2 over West Africa. The present study aimed to use satellite observations to examine pollutant trends over this region.Objective.To examine the trend of NO2 over the entire West Africa sub region in relationship to contributions to environmental emissions using satellite-derived data. This enables the assessment of West Africa regional air pollution hot spots in relationship to enhancing atmospheric factors. The results from this study will also be useful guidance for setting air quality standards for air pollution controls to minimize health hazards.Methods.The present study examined thirteen years of average monthly values of nitrogen dioxide (NO2) to determine the spatio-temporal variation of this pollutant over West Africa. Satellite data for NO2 between 2005 and 2017 were used to determine the variation in pollution levels over West Africa. Correlations between NO2 and meteorological variables (wind speed, rainfall and air temperature) were obtained to explain the influence of West African weather on the region's pollution accumulation.Results.The present study observed that NO2 concentrations varied from place to place and from season to season. Nitrogen dioxide concentrations during the dry season were higher (sometimes 200% higher) than values observed in the wet season which ranged between 0.5 and 6×1015 molec/cm2. Nitrogen dioxide north-south oscillation during the course of a year is largely controlled by the inter-tropical discontinuity (ITD) zone as high concentrations of NO2 are found in the vicinity of the ITD where wind speeds and horizontal vorticity approaches zero. Correlation analysis between NO2 and some atmospheric variables indicated NO2 concentrations are well influenced by atmospheric variables showing bipolar signals depending on the season. An increasing trend of NO2 was also found over selected cities of the region. This indicated that regional air quality is gradually deteriorating.Conclusions.The implications of worsening regional air quality were examined in the light of the prevailing COVID-19 pandemic. The dominant atmospheric factor determining pollution episodes in the region is the inter-tropical discontinuity line which marks the meeting point between the two wind regimes over the region. Densely populated areas are characteristically prone to elevated pollution and have experienced high fatalities during the COVID-19 pandemic.Competing Interests.The authors declare no competing financial interests.
Highlights
Certain atmospheric gases are commonly referred to as criteria pollutants
Nitrogen dioxide north-south oscillation during the course of a year is largely controlled by the inter-tropical discontinuity (ITD) zone as high concentrations of NO2 are found in the vicinity of the ITD where wind speeds and horizontal vorticity approaches zero
The present study examined the spatio-temporal spread of NO2 concentrations in West Africa for both the wet and dry seasons
Summary
Certain atmospheric gases are commonly referred to as criteria pollutants. The amount of the gases present in the atmosphere measured against a set of standard values determines the air quality of a location. Nitrogen dioxide (NO2) is a criteria pollutant that has several sources of emissions over West Africa. Both natural and anthropogenic emission sources of NO2 are largely uncontrolled over the region. To examine the trend of NO2 over the entire West Africa sub region in relationship to contributions to environmental emissions using satellite-derived data. This enables the assessment of West Africa regional air pollution hot spots in relationship to enhancing atmospheric factors. The present study examined thirteen years of average monthly values of nitrogen dioxide (NO2) to determine the spatio-temporal variation of this pollutant over West Africa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.