Abstract
Polar lows (PLs) are intense mesoscale weather systems that often cause severe storm winds in the Nordic Seas but were considered as being exceedingly rare in the Pacific Arctic region before sea ice decline. Here, we explore four PLs observed on 18–22 October 2017 in the Chukchi and Beaufort Seas—an area with an exceptionally sparse observation network. The study is based on the combined use of the satellite microwave measurements, as well as infrared imagery, the ERA5, MERRA-2 and NCEP-CFSv2 reanalysis data sets. An unusually strong PLs pair developed near the marginal ice zone during a marine-cold air outbreak in anomalously low sea ice extent conditions. PLs pair moved southward as a mesocyclonic system called the “merry-go-round”, under the upper-level tropospheric vortex with a cold core. Multi-sensor satellite measurements show that, in the mature stage, a PL pair had near-surface wind speeds (W) close to hurricane force—over 30 m/s. Comparison analysis of W distributions within the strongest PL showed that all reanalysis data sets reasonably reproduce the PL median wind speed but underestimate its extreme values by 15–23%. The reanalysis data sets detected only two PLs with horizontal scales of over 220 km. Tracks of identified PLs for all data sets are in good agreement with the ones obtained from satellite images capturing the main features of the mesoscale weather system propagation. For the track of the strongest PL event, ERA5 exhibited the most accordance with satellite observations with a tracking error of 50–60 km.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.