Abstract
The long-term monitoring of wetland ecosystem functioning is critical because wetlands, which provide multiple services, can be affected by human activities and climate change. The aim of this study was to monitor wetland ecosystem functioning in the long term using the Landsat archive. Four contrasting, Ramsar wetlands were selected in boreal, temperate, arid, and tropical areas. First, the annual sum of the normalized difference vegetation index (NDVI-I) was calculated as an indicator of annual net primary productivity for the period 1984–2021 using the continuous change detection and classification (CCDC) algorithm. Next, the influence of the number of Landsat images and class of land use and land cover (LULC) on the accuracy of the CCDC was investigated. Finally, correlations between annual NDVI-I and climate were analyzed. The results revealed that NDVI-I accuracy was influenced mainly by the LULC class and to a lesser extent by the number of cloud-free Landsat observations. Infra- and inter-site variations in NDVI-I were high and showed an overall increasing trend. NDVI-I was positively correlated with the mean temperature. This study shows that this approach applied in contrasting sites is robust for the long-term monitoring of wetland ecosystem functioning and can be used to improve the implementation of international biodiversity conservation policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.