Abstract

Satellite laser ranging (SLR) retroreflectors along with GNSS receivers are installed onboard numerous active low earth orbiters (LEOs) for the independent validation of GNSS-based precise orbit determination (POD) products. SLR validation results still contain many systematic errors that require special handling of various biases. For this purpose, we derive methods of reducing systematic effects affecting the SLR residuals to LEO Swarm satellites. We test solutions incorporating the estimation of range biases, station coordinate corrections, tropospheric biases, and horizontal gradients of the troposphere delays. When estimating range biases once per day, the standard deviation (STD) of Swarm-B SLR residuals is reduced from 10 to 8 mm for the group of high-performing SLR stations. The tropospheric biases estimated once per day, instead of range biases, further reduce the STD of residuals to the level of 6 mm. The systematic errors that manifest as dependencies of SLR residuals under different measurement conditions, e.g., elevation angle, are remarkably diminished. Furthermore, introducing troposphere biases allows for the comparison of the orbit quality between kinematic and reduced-dynamic orbits as the GPS-based orbit errors become more pronounced when SLR observations are freed from elevation-dependent errors. Applying tropospheric biases in SLR allows obtaining the consistency between the POD solution and SLR observations that are two times better than when neglecting to model of systematic effects and by 29% better when compared with solutions considering present methods of range bias handling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call