Abstract

This paper proposes a deep-Q-network (DQN) controller for network selection and adaptive resource allocation in heterogeneous networks, developed on the ground of a Markov decision process (MDP) model of the problem. Network selection is an enabling technology for multi-connectivity, one of the core functionalities of 5G. For this reason, the present work considers a realistic network model that takes into account path-loss models and intra-RAT (radio access technology) interference. Numerical simulations validate the proposed approach and show the improvements achieved in terms of connection acceptance, resource allocation, and load balancing. In particular, the DQN algorithm has been tested against classic reinforcement learning one and other baseline approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.