Abstract
Abstract Updraft speeds of thermals have always been difficult to measure, despite the significant role they play in transporting pollutants and in cloud formation and precipitation. In this study, updraft speeds in buoyancy-driven planetary boundary layers (PBLs) measured by Doppler lidar are found to be correlated with properties of the PBL and surface over the Southern Great Plains (SGP) site operated by the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM). Based on the relationships found here, two approaches are proposed to estimate both maximum (Wmax) and cloud-base (Wcb) updraft speeds using satellite data together with some ancillary meteorological data of PBL depth, wind speed at 10-m height, and air temperature at 2-m height. The required satellite input data are cloud-base and surface skin temperatures. PBL depth can be determined by using cloud-base temperature in combination with European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis data. Validation against lidar-measured updraft speeds demonstrated the feasibility of retrieving Wmax and Wcb using high-resolution Suomi–National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi-NPP VIIRS) measurements over land for PBLs with thermally driven convective clouds during the satellite overpass time. The root-mean-square errors (RMSE) of Wmax and Wcb are 0.32 and 0.42 m s−1, respectively. This method does not work for a stable or a mechanically driven PBL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.