Abstract

Satellite images can provide valuable information about the presented urban landscape scenes to remote sensing and telecommunication applications. Obtaining information from satellite images is difficult since all the objects and their surroundings are presented with feature complexity. The shadows cast by buildings in urban scenes can be processed and used for estimating building heights. Thus, a robust and accurate building shadow detection process is important. Region-based active contour models can be used for satellite image segmentation. However, spectral heterogeneity that usually exists in satellite images and the feature similarity representing the shadow and several non-shadow regions makes building shadow detection challenging. In this work, a new automated method for delineating building shadows is proposed. Initially, spectral and spatial features of the satellite image are utilized for designing a custom filter to enhance shadows and reduce intensity heterogeneity. An effective iterative procedure using intensity differences is developed for tuning and subsequently selecting the most appropriate filter settings, able to highlight the building shadows. The response of the filter is then used for automatically estimating the radiometric property of the shadows. The customized filter and the radiometric feature are utilized to form an optimized active contour model where the contours are biased to delineate shadow regions. Post-processing morphological operations are also developed and applied for removing misleading artefacts. Finally, building heights are approximated using shadow length and the predefined or estimated solar elevation angle. Qualitative and quantitative measures are used for evaluating the performance of the proposed method for both shadow detection and building height estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.