Abstract

The CubeSat DTUsat-2 was designed and built by students and faculty at the Technical University of Denmark and launched to low earth orbit on June 2014. Its mission was to aid ornithologists in bird migration research. Shortly after launch and orbit injection, it became apparent that all was not nominal. To understand the problem and find the causes, a forensic investigation was initiated. The investigation used recorded Morse-encoded beacons emitted by the satellite as a starting point. This paper presents the real-life data from DTUsat-2 on orbit and the methodologies used to visualize the key element in the investigation, namely, the correlation between orbit position and the beacon counter. Based on the data presented, an explanation for the observed behaviour of DTUsat-2 is given.

Highlights

  • To date, more than 399 CubeSats have been launched not including the CubeSats from Planet and Spire

  • The top part shows the launch from Yasny (Y) deployment sequence (D) and first pass over DTU ground station which occurred during first orbit; the dashed lines indicate ground station contact window

  • The analysis presented in this paper pertains to four subsystems; these are the electrical power subsystem (EPS), the attitude control system (ACS), the on-board computer (OBC), and the communication system (COM); a brief introduction is given below

Read more

Summary

Introduction

More than 399 CubeSats have been launched not including the CubeSats from Planet and Spire. The top part shows the launch from Yasny (Y) deployment sequence (D) and first pass over DTU ground station which occurred during first orbit; the dashed lines indicate ground station contact window. The lower part shows an example of the expected behaviour of the satellite after the attitude control system has locked the satellite in synch with the Earth magnetic field. The expected beacon pattern is displayed above the three contact windows. We expected every second beacon to originate from the on-board computer (OBC) indicated with an “o”. Rather than the expected behaviour, we observed that “c” had a value close to zero, i.e., between 0 and 22. The highest observed counter value, 287, occurred during the first few days of the mission.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.