Abstract

The Mw = 9.0 earthquake that occurred off the coast of Japan’s Tohoku region produced a great tsunami causing catastrophic damage and loss of life. Within hours of the tsunami event, satellite data were readily available and massive media coverage immediately circulated thousands of photographs and videos of the tsunami. Satellite data allow a rapid assessment of inundated areas where access can be difficult either as a result of damaged infrastructure (e.g., roads, bridges, ports, airports) or because of safety issues (e.g., the hazard at Nuclear Power Plant at Fukushima). In this study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high-resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese and other international scientists validated our results. This study focused on three different locations. Site selection was based on coastal morphologies and the distance to the tsunami source (epicenter). Study sites are Rikuzentakata, Oyagawahama, and Yagawahama in the Oshika Peninsula, and the Sendai coastal plain (Sendai City to Yamamoto City). Maximum inundation distance (6 km along the river) and maximum runup (39 m) at Rikuzentakata estimated from satellite data agree closely with the 39.7 m inundation reported in the field. Here the ria coastal morphology and horn shaped bay enhanced the tsunami runup and effects. The Sendai coastal plain shows large inundation distances (6 km) and lower runup heights. Natori City and Wakabayashi Ward, on the Sendai plain, have similar runup values (12 and 16 m, respectively) obtained from SRTM data; these are comparable to those obtained from field surveys (12 and 9.5 m). However, at Yagawahama and Oyagawahama, Miyagi Prefecture, both SRTM and ASTER data provided maximum runup heights (41 to 45 m and 33 to 34 m, respectively), which are higher than those measured in the field (about 27 m). This difference in DEM and field data is associated with ASTER and SRTM DEM’s pixel size and vertical accuracy, the latter being dependent on ground coverage, slope, aspect and elevation. Countries with less access to technology and infrastructure can benefit from the use of satellite imagery and freely available DEMs for an initial, pre-field surveys, rapid estimate of inundated areas, distances and runup, and for assisting in hazard management and mitigation after a natural disaster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call