Abstract

AbstractTropospheric ozone directly affects the radiative balance of the Earth through interaction with shortwave and longwave radiation. Here we use measurements of tropospheric ozone from the Tropospheric Emission Spectrometer satellite instrument, together with chemical transport and radiative transfer models, to produce a first estimate of the stratospherically adjusted annual radiative effect (RE) of tropospheric ozone. We show that differences between modeled and observed ozone concentrations have little impact on the RE, indicating that our present‐day tropospheric ozone RE estimate of 1.17 ± 0.03 W m−2 is robust. The RE normalized by column ozone decreased between the preindustrial and the present‐day. Using a simulation with historical biomass burning and no anthropogenic emissions, we calculate a radiative forcing of 0.32 W m−2 for tropospheric ozone, within the current best estimate range. We propose a radiative kernel approach as an efficient and accurate tool for calculating ozone REs in simulations with similar ozone abundances.

Highlights

  • Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved

  • The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item

  • Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request

Read more

Summary

Introduction

Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.